design

Getting Started with .NET Core Guide

April 16, 2025


🌟 Why Firebase AI?

✔ Pre-built ML models (Vision, NLP, Recommendations)

✔ Cloud-hosted (No heavy local ML setup)

✔ Scalable (Handles spikes in demand)

✔ Easy integration with other Firebase services

🛠 Setup Firebase in .NET Core

1. Install Firebase Admin SDK

dotnet add package FirebaseAdmin


2. Initialize Firebase

using FirebaseAdmin;
using Google.Apis.Auth.OAuth2;

var credential = GoogleCredential.FromFile("path/to/serviceAccountKey.json");
FirebaseApp.Create(new AppOptions()
{
    Credential = credential
});


🤖 Key Firebase AI Services

1. Firebase ML Kit (On-Device)

// Install ML Kit package
dotnet add package Xamarin.Firebase.ML.Common


Image Labeling Example:

var image = FirebaseVisionImage.FromFilePath("image.jpg");
var detector = FirebaseVision.Instance.GetOnDeviceImageLabeler();
var labels = await detector.ProcessImageAsync(image);

foreach (var label in labels)
{
    Console.WriteLine($"{label.Text} (Confidence: {label.Confidence})");
}


2. Firebase Predictions

// User behavior prediction
var predictions = FirebasePredictions.Instance;
var churnProbability = await predictions
    .GetUserPrediction("churn_probability");

☁️ Cloud AI Integrations


1. Firebase + Google Cloud AI

// Install Cloud AI package
dotnet add package Google.Cloud.Vision.V1

// Image analysis example
var client = ImageAnnotatorClient.Create();
var image = Image.FromFile("image.jpg");
var response = client.DetectLabels(image);

foreach (var label in response)
{
    Console.WriteLine(label.Description);
}


2. Custom TensorFlow Models

// Host your custom model in Firebase
var options = new FirebaseMLModelOptions.Builder()
    .SetCloudModelName("my_custom_model")
    .Build();

var model = FirebaseModelInterpreter.GetInstance(options);


🔐 Authentication Flow

// Client-side (JavaScript example)
firebase.auth().signInWithEmailAndPassword(email, password)
  .then((userCredential) => {
    // Get ID token for .NET API calls
    return userCredential.user.getIdToken();
  })
  .then((idToken) => {
    // Pass to your .NET Core backend
    fetch('/api/analyze', {
      headers: {
        'Authorization': `Bearer ${idToken}`
      }
    });
  });


🚀 Deployment Options

  1. Firebase Hosting for frontend
firebase deploy --only hosting


Cloud Run for .NET Core backend

gcloud run deploy --image gcr.io/your-project/your-app


💡 Pro Tips

✅ Use Firebase Extensions for pre-built AI workflows

✅ Cache predictions to reduce costs

✅ Combine with Firestore for real-time AI data

🔥 Example Architecture

Copy

[Client App] → [Firebase Auth] → [.NET Core API]  
                      ↓  
[Firestore DB] ← [Cloud Functions] ↔ [AI Services]


Next Steps:

  1. Try the Vision API with image uploads
  2. Implement smart replies using NLP
  3. Build a recommendation engine


4 + 5 =